# BRIEF COMMUNICATION <br> On the Space Group of $\mathrm{BaV}_{3} \mathrm{O}_{8}$ 

Richard E. Marsh<br>The Beckman Institute, ${ }^{1}$ California Institute of Technology, Pasadena, California 91125

Received October 10, 1995; in revised form November 20, 1995; accepted November 22, 1995

The crystal structure of $\mathrm{BaV}_{3} \mathrm{O}_{8}$, recently described in space group $P 2_{1}$, is better described in $P 2_{1} / m$. Refinement in $P 2_{1} / m$ leads to small but highly significant changes in bond lengths and angles; the general description of the structure is unchanged. © 1996 Academic Press, Inc.

The crystal structure of the mixed-valent compound $\mathrm{BaV}_{3} \mathrm{O}_{8}$ has recently (1) been described in the noncentrosymmetric, polar space group $P 2_{1}$ (monoclinic; $a=7.4347(11), b=5.5512(7), c=8.2012(7) \AA, \beta=$ 1.07.179 (8) $\left.{ }^{\circ}, Z=2\right)$. The reported structure conforms quite closely to the centrosymmetric space group $P 2_{1} /$ $m$, and further refinement in that space group seemed appropriate. This refinement was successful. It was based on the 1579 reflections included in the supplementary

TABLE 1
Coordinates, Space Group $P 2_{1} / m$

| Atom | Site | $x$ | $y$ | $z$ | $U_{\mathrm{eq}}{ }^{a}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Ba | $2(e)$ | $0.21998(4)$ | 0.25 | $-0.09854(4)$ | $0.0133(1)$ |
| $\mathrm{V}(1)$ | $2(e)$ | $0.07233(10)$ | 0.25 | $0.36101(9)$ | $0.0080(1)$ |
| $\mathrm{V}(2)$ | $2(e)$ | $0.29416(10)$ | 0.75 | $0.21642(9)$ | $0.0076(1)$ |
| $\mathrm{V}(3)$ | $2(e)$ | $0.58535(9)$ | 0.25 | $0.31653(9)$ | $0.0071(1)$ |
| $\mathrm{O}(1)$ | $4(a)$ | $0.4777(3)$ | $0.4970(4)$ | $0.1980(3)$ | $0.0114(3)$ |
| $\mathrm{O}(2)$ | $2(e)$ | $0.4339(5)$ | 0.75 | $0.4901(4)$ | $0.0126(6)$ |
| $\mathrm{O}(4)$ | $4(a)$ | $0.1319(4)$ | $0.5016(5)$ | $0.2689(4)$ | $0.0182(4)$ |
| $\mathrm{O}(6)$ | $2(e)$ | $0.1759(6)$ | 0.75 | $0.0147(5)$ | $0.0188(7)$ |
| $\mathrm{O}(7)$ | $2(e)$ | $-0.1802(5)$ | 0.25 | $0.3125(5)$ | $0.0159(7)$ |
| $\mathrm{O}(8)$ | $2(e)$ | $0.1716(6)$ | 0.25 | $0.5652(5)$ | $0.0227(8)$ |

$$
{ }^{a} U_{\text {eq }}=\frac{1}{3} \sum_{i} \sum_{j}\left[U_{i j}\left(a_{i}^{*} a_{j}^{*}\right)\left(\mathbf{a}_{i} \cdot \mathbf{a}_{j}\right)\right] .
$$

[^0]TABLE 2
V-O Bond Lengths and Angles

| Distance $(\AA)$ |  | Angle $\left({ }^{\circ}\right)$ |  |
| :--- | :--- | :--- | :--- |
| $\mathrm{V}(1)-\mathrm{O}(4)$ | $1.707(3)(\times 2)$ | $\mathrm{O}(7)-\mathrm{V}(1)-\mathrm{O}(4)$ | $106.9(2)(\times 2)$ |
| $\mathrm{V}(1)-\mathrm{O}(7)$ | $1.801(4)$ | $\mathrm{O}(8)-\mathrm{V}(1)-\mathrm{O}(4)$ | $111.1(2)(\times 2)$ |
| $\mathrm{V}(1)-\mathrm{O}(8)$ | $1.619(4)$ | $\mathrm{O}(4)-\mathrm{V}(1)-\mathrm{O}(4)$ | $109.8(1)$ |
|  |  | $\mathrm{O}(8)-\mathrm{V}(1)-\mathrm{O}(7)$ | $110.9(2)$ |
|  |  |  |  |
| $\mathrm{V}(2)-\mathrm{O}(1)$ | $1.995(2)(\times 2)$ | $\mathrm{O}(2)-\mathrm{V}(2)-\mathrm{O}(1)$ | $87.1(1)(\times 2)$ |
| $\mathrm{V}(2)-\mathrm{O}(2)$ | $2.177(3)$ | $\mathrm{O}(4)-\mathrm{V}(2)-\mathrm{O}(1)$ | $90.0(1)(\times 2)$ |
| $\mathrm{V}(2)-\mathrm{O}(4)$ | $1.962(3)(\times 2)$ | $\mathrm{O}(6)-\mathrm{V}(2)-\mathrm{O}(1)$ | $95.7(2)(\times 2)$ |
| $\mathrm{V}(2)-\mathrm{O}(6)$ | $1.628(4)$ | $\mathrm{O}(1)-\mathrm{V}(2)-\mathrm{O}(1)$ | $89.5(1)$ |
|  |  | $\mathrm{O}(4)-\mathrm{V}(2)-\mathrm{O}(1)$ | $172.0(1)(\times 2)$ |
|  |  | $\mathrm{O}(4)-\mathrm{V}(2)-\mathrm{O}(2)$ | $84.9(1)(\times 2)$ |
|  |  | $\mathrm{O}(6)-\mathrm{V}(2)-\mathrm{O}(2)$ | $176.1(2)$ |
|  |  | $\mathrm{O}(6)-\mathrm{V}(2)-\mathrm{O}(4)$ | $92.3(2)(\times 2)$ |
|  |  | $\mathrm{O}(4)-\mathrm{V}(2)-\mathrm{O}(4)$ | $89.3(1)$ |
| $\mathrm{V}(3)-\mathrm{O}(1)$ | $1.734(2)(\times 2)$ | $\mathrm{O}(7)-\mathrm{V}(3)-\mathrm{O}(1)$ | $106.7(1)(\times 2)$ |
| $\mathrm{V}(3)-\mathrm{O}(2)$ | $1.634(3)$ | $\mathrm{O}(1)-\mathrm{V}(3)-\mathrm{O}(1)$ | $104.5(1)$ |
| $\mathrm{V}(3)-\mathrm{O}(7)$ | $1.753(4)$ | $\mathrm{O}(2)-\mathrm{V}(3)-\mathrm{O}(1)$ | $112.7(1)(\times 2)$ |
|  |  | $\mathrm{O}(2)-\mathrm{V}(3)-\mathrm{O}(7)$ | $113.0(2)$ |

material (2), and converged quickly $\left((\Delta / \sigma)_{\max }<0.01\right)$ to an $R$ of 0.029 for 67 parameters-adequately close, surely, to the 0.028 for 109 parameters obtained in the earlier $P 2_{1}$ refinement (Table 1 of Ref. 1). Coordinates are given in Table 1.

The general features of the structure-which is based on two $\mathrm{V}^{\mathrm{V}} \mathrm{O}_{4}$ tetrahedra and a $\mathrm{V}^{\mathrm{IV}} \mathrm{O}_{6}$ octahedron-are unchanged; however, some changes in the bond lengths and angles are of great statistical significance. Revised $\mathrm{V}-\mathrm{O}$ distances and $\mathrm{O}-\mathrm{V}-\mathrm{O}$ angles are given in Table 2. All four independent cations lie on mirror planes.

The earlier authors were led to choose space group $P 2_{1}$ over $P 2_{1} / m$ because "the statistical treatment of the intensity data favored the noncentrosymmetric space
group." This misleading indication probably resulted from the fact that the unit cell contains only a small number of dominating scatterers-two Ba atoms. It has been shown that such a situation results in the intensity distribution being biased toward a noncentrosymmetric indication (3).

## REFERENCES

1. Y. Oka, T. Yao, and N. Yamamoto, J. Solid State Chem. 117, 407 (1995).
2. A listing of $F_{\text {obs }}$ and $F_{\text {calc }}$ was kindly furnished by the Editorial Office of J. Solid State Chem.
3. A. Hargreaves, Acta Crystallogr. 8, 12 (1955).

[^0]:    ${ }^{1}$ Contribution No. 9149.

